Interview Questions & Answers DataWeave (2025)

 
 
Interview Questions & Answers  Dataweave (2025)

Interview Questions & Answers on DataWeave DataWeave interview questions DataWeave questions and answers MuleSoft DataWeave interview DataWeave technical interview questions DataWeave coding interview questions DataWeave 2.0 interview questions DataWeave syntax questions top DataWeave interview questions advanced DataWeave interview questions DataWeave interview preparation most commonly asked DataWeave interview questions scenario-based DataWeave interview questions how to crack a DataWeave interview beginner to advanced DataWeave questions real-time DataWeave interview questions with answers DataWeave interview tips for freshers practical DataWeave coding questions MuleSoft developer interview Q&A DataWeave transformation examples for interviews DataWeave interview questions with use cases #DataWeaveInterview #MuleSoftInterview #DataWeaveQnA #MuleSoftDeveloper #IntegrationDeveloper #TechInterviewPrep #MuleSoftJobs #DataTransformation #InterviewQuestions #DataWeaveCoding #MuleSoftTutorial #DataWeaveTips #BackendDeveloperInterview Top 25 DataWeave Interview Questions and Answers (2025 Edition) Must-Know DataWeave Questions for MuleSoft Interviews Crack Your Next DataWeave Interview with These Real-World Examples Prepare for your MuleSoft DataWeave interview with these frequently asked questions and detailed answers. Covers beginner to advanced levels with real coding examples. 25 DataWeave Interview Questions Every Developer Should Know Ace Your MuleSoft Interview with These DataWeave Q&A DataWeave Tips & Tricks for Technical Interviews DataWeave interview questions  MuleSoft DataWeave interview questions  DataWeave questions and answers  DataWeave 2.0 interview questions  MuleSoft interview questions  DataWeave coding questions  DataWeave transformation interview questions Advanced DataWeave interview questions  MuleSoft DataWeave scenarios  Common DataWeave interview questions  Real-time DataWeave interview questions  MuleSoft integration interview questions  DataWeave scripting questions  DataWeave for beginners interview  DataWeave map and filter examples MuleSoft developer interview preparation  DataWeave functions and operators  Transformations in DataWeave  MuleSoft data transformation interview  DataWeave performance optimization questions  MuleSoft data mapping interview  MuleSoft 4 DataWeave syntax  DataWeave best practices Top 25 DataWeave Interview Questions and Answers in MuleSoft [2025]  Advanced DataWeave 2.0 Questions for MuleSoft Interviews  DataWeave Interview Preparation Guide – MuleSoft Developer Tips  Real-World DataWeave Interview Scenarios and Solutions



1. What is DataWeave and why is it used in MuleSoft?
Answer:
DataWeave is a MuleSoft transformation language (DW 2.x in Mule 4) designed to map, transform, enrich, and filter data across formats like JSON, XML, CSV, and Java objects. Typical use cases include API payload conversion, file transformation, and building integration pipelines.
 
2.Transform JSON to XML using DataWeave

Q: Write a DataWeave script that maps:
{ "name": "John", "age": 30, "email": "john@example.com" }
to:
<person>
  <name>John</name>
  <age>30</age>
  <email>john@example.com</email>
</person>
A:
%dw 2.0
output application/xml
---
{
  person: {
    name: payload.name,
    age: payload.age,
    email: payload.email
  }
}
 
3. Basic String Manipulation
Q: Convert "John Doe" to uppercase.
A:
%dw 2.0
output application/json
---
{ name: upper(payload.name) }
Transforms "John Doe" to {"name":"JOHN DOE"}
 
4. Filtering Arrays
Q: Filter items with value > 15.
A:
%dw 2.0
output application/json
---
payload filter ((item) -> item.value > 15)
Returns filtered objects
 
5. Combining First & Last Name
Q: Given {"firstName":"John","lastName":"Doe"}, combine into "fullName".
A:
%dw 2.0
output application/json
---
{ fullName: payload.firstName ++ " " ++ payload.lastName }
Yields {"fullName":"John Doe"}
 
6. Real-World Scenario: JSON→XML (CRM → Marketing Platform)
Scenario: Transform CRM JSON {firstName,lastName,email} into Marketing XML {GivenName,FamilyName,EmailAddress}.
Solution:
%dw 2.0
output application/xml
---
Customer: {
  GivenName: payload.firstName,
  FamilyName: payload.lastName,
  EmailAddress: payload.email
}
This real example enabled seamless CRM‑to‑platform integration
 
Real‑World DataWeave Scenarios & Solutions

A. Flatten Nested JSON to CSV
Scenario: Convert complex JSON to flat CSV.
Solution Outline:
·         Inspect nested payload structure.
·         Use flatten, map, pluck.
·         Convert to CSV via output application/csv
 
B. Date Parsing & Formatting
Scenario: Reformat "2023-01-01T00:00:00Z" to "01/01/2023".
Solution:
%dw 2.0
output application/json
---
payload as Date {format: "yyyy-MM-dd'T'HH:mm:ssz"}
      as String {format: "MM/dd/yyyy"}
Result: "01/01/2023"
 
C. Lookup Transformation
Use a map or file as lookup table; then map + find to enrich or merge data. Handle missing keys carefully
 
D. Grouping Data
Group transactions by customer ID using groupBy:
payload groupBy $.customerId
       mapObject ((customerId, txns) -> {
           customerId: customerId,
           total: sum(txns.*.amount)
       })
Computes total per customer
 
E. Handling Null Values
Strategies include:
·         default keyword
·         when or unless
·         flatten to remove nulls
Mention error handling implications
 
F. Performance with Large Files
·         Use streaming mode and batch jobs
·         Avoid in-memory ops
·         Employ caching for repeated lookups — essential for high‑volume integrations
 
Preparation Tips
·         Know core functions: map, filter, groupBy, flatten, joinBy, pluck, default, read/write
·         Practice scenarios: JSON⇄XML/CSV, lookup, aggregation
·         Master patterns: error handling, streaming, batch mode
·         Use tools: DataWeave Playground for quick testing
 
Sample Q&A Summary Table

Question

What to Explain

Key DW Concepts

Transform formats

Show correct input/output script

input/output directive

Handle null

Use default or remove nulls

default, when, flatten

Optimize large data

Streaming, batch, caching

streaming mode, batch job

Lookup enrich

Merge payload with reference

map, find, pluck

Group Data

Summarize by key

groupBy, sum